ASYNC – Resolving asynchronous responses of North Atlantic climate to deglacial changes in ocean circulation

The proposed project will test the hypothesis that gradual changes in Atlantic Meridional Overturning Circulation (AMOC) -a system of surface and deep ocean currents that exerts a primary control on Earth’s climate, led to abrupt shifts in North Atlantic climate during the transition out of the last ice age and into the present warm interglacial (~20,000-10,000 years ago). Greenlandic ice-core records show clear evidence that this period was characterised by major abrupt climate shifts in less than a decade, which have been attributed to changes in the AMOC regime associated with reduced northward surface heat transport in the high-latitude North Atlantic and its deep southward return flow. Critically, the anomalous weakening of the AMOC in the last decades caused by enhanced fluxes of meltwater and ice export from the Arctic in response to Arctic change prompts the question: Is the current decline in AMOC heralding a new phase of abrupt change similar to those recorded in ice cores and ocean sediments, and what is the response time of North Atlantic climate to changes in high-latitude surface and deep ocean circulation?

Resolving and quantifying asynchronous changes within the coupled ocean-atmosphere system is hence essential to improve our theoretical understanding of climate processes and predictive capacity of climate models, as well as identifying under which conditions abrupt climate change occurs. ASYNC is an international collaborative project led by the University of Cambridge that will tackle this fundamental problem. The project will avail of unique North Atlantic Ocean sediment records to generate a suite of precisely dated and multidecadally-resolved proxy records of ocean circulation and climate change. ASYNC represents the first targeted effort to compare high resolution North Atlantic proxy records by precisely integrating the underlying timescales in a continuous fashion. The marine records will be synchronised to the Greenland ice-core chronology via independent and continuous reconstructions of globally synchronous variations in the incoming cosmic ray flux using multidecadally-resolved cosmogenic 10Be records from seafloor sediments and published ice cores. The proposed project will result in new cosmogenic 10Be, sea ice, meltwater discharge, and bottom- and surface-water ventilation reconstructions from three North Atlantic marine sediment cores. The palaeoceanographic reconstructions, and in particular the bottom-water ventilation records, which reflect the southward deep component of AMOC, will be directly compared to events recorded in ice-core climate reconstructions from Greenland. Together, ASYNC will result in the first network of continuously synchronised records of atmospheric, oceanic and sea ice change that will resolve the temporal and spatial propagation of North Atlantic ocean perturbations on the climate system across the major climatic transitions that punctuated the last deglaciation (~20,000-10,000 years ago). Results from ASYNC will advance the current understanding of i) the nature and timing of abrupt climate shifts across climate archives, ii) nonlinear responses of AMOC and climate to gradual Greenland Ice Sheet and Arctic sea ice meltwater forcing, and iii) ocean precursors of rapid climate change in the North Atlantic region.

Grant reference
NE/W006243/1
Total awarded
£543,217 GBP
Start date
19 Jul 2022
Duration
2 years 11 months 30 days
End date
18 Jul 2025
Status
Active