However, NH3 emissions, driven largely by agriculture, have hardly decreased. This has
resulted in long-term changes in aerosol pH and chemistry that are not well understood. Additionally, we
lack understanding of natural NH3 sources. Oceanic NH4+ may be a key source of NH3 to the marine
atmosphere, depending on biogeochemistry, water temperature and water pH. Estimates of air-sea NH3
flux on a regional/global scale are severely hampered by a) a paucity of marine atmospheric NH3
observations, and b) a lack of mechanistic studies of air-water NH3 exchange processes. As a result, NH3 is
not well represented in global climate models and its impact is poorly constrained or neglected. Project Aims and Methods:
It is envisaged that this PhD project will combine long-term ambient observations, laboratory experiments,
and an Earth System Model to significantly improve our understandings in atmospheric NH3 cycling, oceanic
NH3 emissions, and the impact of NH3 on aerosols. The student is encouraged to define the proportional
focus of the PhD. Some examples of research questions may be:
1. What are the concentrations of atmospheric NH3 and aerosol NH4+in different airmasses (e.g.
marine Atlantic, mainland Europe, Arctic) and how do they vary seasonally? 2. Does air-sea NH3 exchange behave as predicted according to existing theory (as a function of water
temperature and pH) and is the ocean a large source of NH3 to the marine atmosphere? 3. What are the impacts of (ocean-derived) NH3 on marine aerosols and clouds? 4. How will oceanic NH3 emission change in the future and what feedback may that have on marine aerosols, clouds and climate?